4D Wavelet-Based Regularization for Parallel MRI Reconstruction: Impact on Subject and Group-Levels Statistical Sensitivity in fMRI

نویسندگان

  • Lotfi Chaari
  • Sébastien Mériaux
  • Solveig Badillo
  • Jean-Christophe Pesquet
  • Philippe Ciuciu
چکیده

Parallel MRI is a fast imaging technique that enables the acquisition of highly resolved images in space. It relies on k-space undersampling and multiple receiver coils with complementary sensitivity profiles in order to reconstruct a full Field-Of-View (FOV) image. The performance of parallel imaging mainly depends on the reconstruction algorithm, which can proceed either in the original k-space (GRAPPA, SMASH) or in the image domain (SENSE-like methods). To improve the performance of the widely used SENSE algorithm, 2Dor slice-specific regularization in the wavelet domain has been efficiently investigated. In this paper, we extend this approach using 3D-wavelet representations in order to handle all slices together and address reconstruction artifacts which propagate across adjacent slices. The extension also accounts for temporal correlations that exist between successive scans in functional MRI (fMRI). The proposed 4D reconstruction scheme is fully unsupervised in the sense that all regularization parameters are estimated in the maximum likelihood sense on a reference scan. The gain induced by such extensions is first illustrated on EPI image reconstruction but also measured in terms of statistical sensitivity during a fast event-related fMRI protocol. The proPreprint submitted to NeuroImage March 21, 2011 posed 4D-UWR-SENSE algorithm outperforms the SENSE reconstruction at the subject and group-levels (15 subjects) for different contrasts of interest and using different parallel acceleration factors on 2×2×3mm3 EPI images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A P ] 2 3 D ec 2 01 1 Multidimensional Wavelet - based Regularized Reconstruc - tion for Parallel Acquisition in Neuroimaging

Parallel MRI is a fast imaging technique that enables the acquisition of highly resolved images in space or/and in time. The performance of parallel imaging strongly depends on the reconstruction algorithm, which can proceed either in the original k-space (GRAPPA, SMASH) or in the image domain (SENSE-like methods). To improve the performance of the widely used SENSE algorithm, 2Dor slice-specif...

متن کامل

le grade de Docteur en Sciences de l’Université de Paris-Est Marne-la-Vallée Spécialité: Traitement du Signal et des images

To reduce scanning time or improve spatio-temporal resolution in some MRI applications, parallel MRI acquisition techniques with multiple coils have emerged since the early 90’s as powerful methods. In these techniques, MRI images have to be reconstructed from acquired undersampled “k-space” data. To this end, several reconstruction techniques have been proposed such as the widely-used SENSitiv...

متن کامل

Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase

Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...

متن کامل

Optimized co-registration method of Spinal cord MR Neuroimaging data analysis and application for generating multi-parameter maps

Introduction: The purpose of multimodal and co-registration In MR Neuroimaging is to fuse two or more sets images (T1, T2, fMRI, DTI, pMRI, …) for combining the different information into a composite correlated data set in order to visualization, re-alignment and generating transform to functional Matrix. Multimodal registration and motion correction in spinal cord MR Neuroimag...

متن کامل

Parallel Mri Reconstruction Using Svd-and- Laplacian Transform Based Sparsity Regularization

The SENSE model with sparsity regularization acts as an unconstrained minimization problem to reconstruct the MRI, which obtain better reconstruction results than the traditional SENSE. To implement the sparsity constraints, discrete wavelet transform (DWT) and total variation (TV) are common exploited together to sparsify the MR image. In this paper, a novel sparsifying transform based on the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011